

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Use of a Polynomial Equation for Analyzing Low-Concentration Adsorption Measurements of Ethane on Activated Carbons

Mieczyslaw Jaroniec^{ab}; Xiaochun Lu^a; Richard Madey^a; Jerzy Choma^c

^a DEPARTMENT OF PHYSICS, KENT STATE UNIVERSITY, KENT, OHIO ^b Institute of Chemistry, M. Curie-Skłodowska University, Lublin, Poland ^c INSTITUTE OF CHEMISTRY WAT, WARSAW, POLAND

To cite this Article Jaroniec, Mieczyslaw , Lu, Xiaochun , Madey, Richard and Choma, Jerzy(1989) 'Use of a Polynomial Equation for Analyzing Low-Concentration Adsorption Measurements of Ethane on Activated Carbons', Separation Science and Technology, 24: 15, 1355 – 1361

To link to this Article: DOI: 10.1080/01496398908050656

URL: <http://dx.doi.org/10.1080/01496398908050656>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Use of a Polynomial Equation for Analyzing Low-Concentration Adsorption Measurements of Ethane on Activated Carbons

MIECZYSŁAW JARONIEC,* XIAOCHUN LU,
and RICHARD MADEY

DEPARTMENT OF PHYSICS
KENT STATE UNIVERSITY
KENT, OHIO 44242

JERZY CHOMA

INSTITUTE OF CHEMISTRY
WAT, 00908 WARSAW, POLAND

Abstract

A polynomial equation is used for analyzing ethane adsorption measurements in the low-concentration region carried out by a dynamic chromatographic method for two microporous activated carbons. For low gas-phase concentrations, this equation reduces to Henry's law. It is shown that this polynomial equation gives a good description of hydrocarbon adsorption on microporous activated carbons.

INTRODUCTION

In the most general representation of the adsorption isotherm equation, the equilibrium pressure p is a function of the adsorbed amount a_i ; i.e., $p = f(a_i)$. Theoretical and experimental studies (1-6) showed that an exponential polynomial effectively describes the experimental dependence of p/a_i ,

*Permanent address: Institute of Chemistry, M. Curie-Skłodowska University, 20031 Lublin, Poland.

on the adsorbed amount a . Everett (1) and Sing (2) utilized this polynomial for evaluating the monolayer capacity and the specific surface area of nonporous adsorbents. Numerical studies of gas adsorption on graphite (3) showed that the first few terms of the exponential polynomial are sufficient to assure an accurate description of the experimental isotherm. Also, a good description of the experimental isotherms was reached for adsorption on zeolites (4).

In this work the exponential polynomial equation will be adapted to describe gas adsorption on microporous solids in the low-concentration region. Ethane adsorption isotherms in the low-concentration region for two microporous activated carbons were used to verify the above-mentioned equation. It is shown that this equation is useful for characterizing hydrocarbon adsorption on microporous activated carbons.

ADSORPTION ISOTHERM EQUATION

The exponential polynomial used for describing gas-solid adsorption isotherms may be written as follows (6):

$$p/\theta = K \exp \left(- \sum_{i=1}^n C'_i \theta^i \right) \quad (1)$$

where

$$\theta = a/a_0 \quad (2)$$

where θ denotes the relative adsorption defined as the ratio of the adsorbed amount a , to the adsorption capacity a_0 , K is Henry's constant, and the coefficients C'_i for $i = 1, 2, \dots, n$ are associated with the two-dimensional virial coefficients that appear in the expansion of the spreading pressure with respect to the adsorbed amount a . Note that Eq. (1) for $C'_i = 0$ ($i > 1$) reduces to Henry's law.

Experimental studies of gas adsorption on microporous solids (7, 8) showed that the so-called characteristic adsorption curve is often temperature invariant; this curve represents the dependence of the relative adsorption θ on the adsorption potential A defined as follows (7):

$$A = RT \ln (p_s/p) \quad (3)$$

where p_s is the saturation vapor pressure, T is the absolute temperature, and R is the universal gas constant. The above discussion indicates that in adsorption on microporous solids, it is convenient to express the adsorption potential A as a function of the relative adsorption θ . Presentation of Eq. (1) in terms of the adsorption potential A gives

$$A = A_s - RT \ln \theta + \sum_{i=1}^n C_i \theta^i \quad (4)$$

where

$$A_s = RT \ln (p_s/K) \quad (5)$$

and

$$C_i = RTC_i \quad \text{for } i = 1, 2, \dots, n \quad (6)$$

It follows from Eq. (4) that the function $Z(\theta) \equiv A + RT \ln \theta$ may be represented by the polynomial

$$Z(\theta) \equiv A + RT \ln \theta = A_s + \sum_{i=1}^n C_i \theta^i \quad (7)$$

where A_s and C_i for $i = 1, 2, \dots, n$ are the linear coefficients of this polynomial.

Differentiation of Eq. (4) with respect to θ gives

$$dA/d\theta = -RT/\theta + \sum_{i=1}^n iC_i \theta^{i-1} \quad (8)$$

The adsorption potential distribution function $X(A) = -d\theta(A)/dA$ associated with Eq. (4) is expressed as follows:

$$X[A(\theta)] \equiv Y(\theta) = -1/(dA/d\theta) = \theta/(RT - \sum_{i=1}^n iC_i \theta^i) \quad (9)$$

where the dependence between θ and A is given by Eq. (4). The adsorption potential distribution $X(A)$ characterizes the energetic heterogeneity of a solid adsorbent.

RESULTS AND DISCUSSION

To illustrate the practical utility of Eq. (4), we used this equation for describing the ethane adsorption isotherms on BPL and PA activated carbons at 273 K. A dynamic chromatographic method, which is described by Huang et al. (9), was employed to measure these isotherms in the low-concentration region. The BPL carbon was obtained from the Calgon Carbon Corporation in Pittsburgh, Pennsylvania, whereas the PA carbon was obtained from the Barnebey-Cheney Company in Columbus, Ohio. Both of these carbons were designed for adsorption of gases and vapors.

To convert the measured ethane concentrations in the gas phase and the solid phase to the relative adsorption θ and the adsorption potential A , we need to know the saturation vapor pressure p_s and the adsorption capacity a_0 . For the ethane saturation pressure p_s , we assumed the value 13,640 mmHg, which was estimated by Lee et al. (10) with the Peng-Robinson equation of state. We evaluated the adsorption capacity a_0 according to the Dubinin-Radushkevich equation, which is commonly used in gas adsorption on microporous activated carbons (7, 8). The values of a_0 for ethane on the BPL and PA activated carbons at 273 K are given in Table 1.

In Fig. 1 the experimental functions $Z(\theta)$ for ethane on BPL (open circles) and PA (closed circles) activated carbons are compared with the theoretical lines calculated according to the polynomial Eq. (7). Numerical analysis showed that the third-degree polynomial (viz., Eq. 7 with $n = 3$) gives a good representation of the experimental isotherms studied; the

TABLE 1
Adsorption Parameters for Ethane on BPL and PA Activated Carbons at 273 K

Quantity	Unit	BPL Carbon	PA Carbon
Adsorption capacity, a_0	mmol/cm ³	4.1	4.7
Coefficient A_s	kJ/mol	16.11	17.02
Coefficient C_1	kJ/mol	-35.29	-33.40
Coefficient C_2	kJ/mol	75.44	64.40
Coefficient C_3	kJ/mol	-64.40	-61.13
Square root of the determination coefficient r_c	—	0.997	1.000

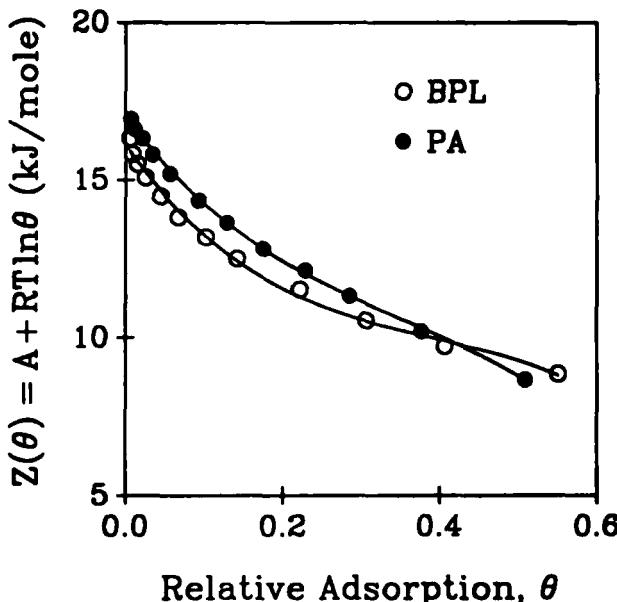


FIG. 1. Comparison of the experimental functions $Z(\theta)$ (circles) with the theoretical curves calculated according to the polynomial Eq. (7) with $n = 3$ for ethane adsorbed on activated carbons at 273 K.

square root of the determination coefficient r_c is greater than 0.997 (cf. Table 1). The determination coefficient r_c is defined as follows:

$$r_c = [S(n) - M\bar{Z}^2] / \left[\sum_{m=1}^M Z_m^2 - M\bar{Z}^2 \right] \quad (10)$$

where

$$S(n) = A_s \sum_{m=1}^M Z_m + C_1 \sum_{m=1}^M \theta_m Z_m + C_2 \sum_{m=1}^M \theta_m^2 Z_m + \dots + \sum_{m=1}^M \theta_m^n Z_m \quad (11)$$

where the quantity Z is defined by Eq. (7), Z_m denotes the Z value for the m th experimental point $\theta = \theta_m$, \bar{Z} is the average value of Z , and M is the number of experimental points. The adsorption potential distributions are plotted in Fig. 2 for ethane-BPL carbon and ethane-PA carbon systems. A comparison of these distribution curves shows that both activated

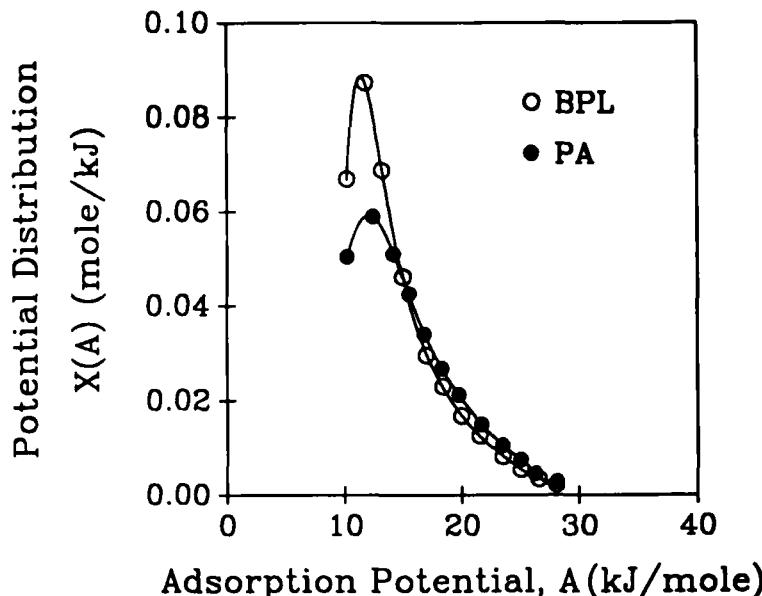


FIG. 2. Adsorption potential distributions calculated according to Eqs. (9) and (4) for ethane on activated carbons.

carbons possess a similar energetic heterogeneity; there is an indication that the PA carbon is a little more heterogeneous than the BPL carbon.

CONCLUSIONS

It is shown that the polynomial Eq. (7) assures an effective approximation of the experimental adsorption isotherms of hydrocarbons on microporous activated carbons. These isotherms in the low-concentration region may be measured quickly and accurately by a dynamic method described elsewhere (9). This low-concentration part of the adsorption isotherm permits evaluation of the adsorption potential distribution function, which characterizes the energetic heterogeneity of microporous solids.

Acknowledgment

This work was supported in part by the National Science Foundation.

REFERENCES

1. D. H. Everett, in *Surface Area Determination* (D. H. Everett, ed.), Butterworths, London, 1970, pp. 181-210.
2. K. S. W. Sing, *Ber. Bunsenges Phys. Chem.*, **79**, 724 (1975).
3. D. H. Everett et al., *Trans. Faraday Soc.*, **70**, 724 (1974).
4. N. N. Avgul, A. G. Bezus, E. S. Dobrova, and A. V. Kiselev, *J. Colloid Interface Sci.*, **42**, 486 (1973).
5. M. Jaroniec, *Phys. Lett.*, **59A**, 259 (1976).
6. M. Jaroniec and A. Patrykiejew, *Ibid.*, **67A**, 309 (1978).
7. M. M. Dubinin, *Prog. Surf. Membr. Sci.*, **9**, 1 (1975).
8. M. M. Dubinin, *Chem. Phys. Carbon*, **2**, 51 (1966).
9. J. C. Huang, R. Forsythe, and R. Madey, *Sep. Sci. Technol.*, **16**, 475 (1981).
10. T. V. Lee, J. C. Huang, D. Rothstein, and R. Madey, *Carbon*, **22**, 493 (1984).

Received by editor January 6, 1989